79 research outputs found

    The complete mitochondrial genome of Yarrowia lipolytica

    Get PDF
    We here report the complete nucleotide sequence of the 47.9 kb mitochondrial (mt) genome from the obligate aerobic yeast Yarrowia lipolytica. It encodes, all on the same strand, seven subunits of NADH: ubiquinone oxidoreductase (ND1-6, ND4L), apocytochrome b (COB), three subunits of cytochrome oxidase (COX1, 2, 3), three subunits of ATP synthetase (ATP6, 8 and 9), small and large ribosomal RNAs and an incomplete set of tRNAs. The Y. lipolytica mt genome is very similar to the Hansenula wingei mt genome, as judged from blocks of conserved gene order and from sequence homology. The extra DNA in the Y. lipolytica mt genome consists of 17 group 1 introns and stretches of A+Trich sequence, interspersed with potentially transposable GC clusters. The usual mould mt genetic code is used. Interestingly, there is no tRNA able to read CGN (arginine) codons. CGN codons could not be found in exonic open reading frames, whereas they do occur in intronic open reading frames. However, several of the intronic open reading frames have accumulated mutations and must be regarded as pseudogenes. We propose that this may have been triggered by the presence of untranslatable CGN codons. This sequence is available under EMBL Accession No. AJ307410

    Application of the yeast Yarrowia lipolytica as a model to analyse human pathogenic mutations in mitochondrial complex I (NADH:ubiquinone oxidoreductase)

    Get PDF
    AbstractWhile diagnosis and genetic analysis of mitochondrial disorders has made remarkable progress, we still do not understand how given molecular defects are correlated to specific patterns of symptoms and their severity. Towards resolving this dilemma for the largest and therefore most affected respiratory chain enzyme, we have established the yeast Yarrowia lipolytica as a eucaryotic model system to analyse respiratory chain complex I. For in vivo analysis, eYFP protein was attached to the 30-kDa subunit to visualize complex I and mitochondria. Deletions strains for nuclear coded subunits allow the reconstruction of patient alleles by site-directed mutagenesis and plasmid complementation. In most of the pathogenic mutations analysed so far, decreased catalytic activities, elevated KM values, and/or elevated I50 values for quinone-analogous inhibitors were observed, providing plausible clues on the pathogenic process at the molecular level. Leigh mutations in the 49-kDa and PSST homologous subunits are found in regions that are at the boundaries of the ubiquinone-reducing catalytic core. This supports the proposed structural model and at the same time identifies novel domains critical for catalysis. Thus, Y. lipolytica is a useful lower eucaryotic model that will help to understand how pathogenic mutations in complex I interfere with enzyme function

    Influence of a Thermo-Mechanical Treatment on the Fatigue Lifetime and Crack Initiation Behavior of a Quenched and Tempered Steel

    Get PDF
    A thermo-mechanical treatment (TMT) at the temperature of maximum dynamic strain aging has been optimized and performed on quenched and tempered steel SAE4140H (German designation: 42CrMo4) in order to improve the fatigue limit in the high cycle fatigue (HCF) and and very high cycle fatigue (VHCF) regimes. Fatigue tests, with ultimate cycle numbers of 107 and 109, have shown that the TMT can increase both the fatigue lifetime and the fatigue limit in the HCF and VHCF regimes. The increased stress intensity factors of the critical inclusions after the TMT indicate that the effect can be attributed to a stabilized microstructure around critical crack-initiating inclusions through the locking of edge dislocations by carbon atoms during the TM

    Biophysical and structural characterization of proton-translocating NADH-dehydrogenase (complex I) from the strictly aerobic yeast Yarrowia lipolytica

    Get PDF
    AbstractMitochondrial proton-translocating NADH-dehydrogenase (complex I) is one of the largest and most complicated membrane bound protein complexes. Despite its central role in eukaryotic oxidative phosphorylation and its involvement in a broad range of human disorders, little is known about its structure and function. Therefore, we have started to use the powerful genetic tools available for the strictly aerobic yeast Yarrowia lipolytica to study this respiratory chain enzyme. To establish Y. lipolytica as a model system for complex I, we purified and characterized the multisubunit enzyme from Y. lipolytica and sequenced the nuclear genes coding for the seven central subunits of its peripheral part. Complex I from Y. lipolytica is quite stable and could be isolated in a highly pure and monodisperse state. One binuclear and four tetranuclear iron–sulfur clusters, including N5, which was previously known only from mammalian mitochondria, were detected by EPR spectroscopy. Initial structural analysis by single particle electron microscopy in negative stain and ice shows complex I from Y. lipolytica as an L-shaped particle that does not exhibit a thin stalk between the peripheral and the membrane parts that has been observed in other systems

    Antagomir-17-5p Abolishes the Growth of Therapy-Resistant Neuroblastoma through p21 and BIM

    Get PDF
    We identified a key oncogenic pathway underlying neuroblastoma progression: specifically, MYCN, expressed at elevated level, transactivates the miRNA 17-5p-92 cluster, which inhibits p21 and BIM translation by interaction with their mRNA 3′ UTRs. Overexpression of miRNA 17-5p-92 cluster in MYCN-not-amplified neuroblastoma cells strongly augments their in vitro and in vivo tumorigenesis. In vitro or in vivo treatment with antagomir-17-5p abolishes the growth of MYCN-amplified and therapy-resistant neuroblastoma through p21 and BIM upmodulation, leading to cell cycling blockade and activation of apoptosis, respectively. In primary neuroblastoma, the majority of cases show a rise of miR-17-5p level leading to p21 downmodulation, which is particularly severe in patients with MYCN amplification and poor prognosis. Altogether, our studies demonstrate for the first time that antagomir treatment can abolish tumor growth in vivo, specifically in therapy-resistant neuroblastoma

    MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer

    Get PDF
    We previously reported that miR-1 is among the most consistently down-regulated miRs in primary human prostate tumors. In this follow-up study, we further corroborated this finding in an independent data set and made the novel observation that miR-1 expression is further reduced in distant metastasis and is a candidate predictor of disease recurrence. Moreover, we performed in vitro experiments to explore the tumor suppressor function of miR-1. Cell-based assays showed that miR-1 is epigenetically silenced in human prostate cancer. Overexpression of miR-1 in these cells led to growth inhibition and down-regulation of genes in pathways regulating cell cycle progression, mitosis, DNA replication/repair and actin dynamics. This observation was further corroborated with protein expression analysis and 3′-UTR-based reporter assays, indicating that genes in these pathways are either direct or indirect targets of miR-1. A gene set enrichment analysis revealed that the miR-1-mediated tumor suppressor effects are globally similar to those of histone deacetylase inhibitors. Lastly, we obtained preliminary evidence that miR-1 alters the cellular organization of F-actin and inhibits tumor cell invasion and filipodia formation. In conclusion, our findings indicate that miR-1 acts as a tumor suppressor in prostate cancer by influencing multiple cancer-related processes and by inhibiting cell proliferation and motility
    corecore